
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

OPTIMIZATION OF WEB SERVER THROUGH A DOMAIN NAME SYSTEM

APPROACH

Dr varaPrasad .s. .Kondapalli
1

1
 Director&principal,G.H. Raisoni college of engg&mgmt.

Ahmednagar,maharastra,india
Vara_sr@yahoo.com

Abstract

A clustered web system with one virtual URL-name is one of

the possible approaches to handle ever increasing client requests

to popular websites. This system maintains a single interface to

the users & has the potential to provide better load balancing.

The client HTTP requests can be assigned to the web server

with the least load by the IP address dispatcher. The IP address

dispatcher assigns client requests to the web server through the

packet rewriting mechanism that modifies the destination

address of each incoming packet to the address of the selected

web server. However, the task of rewriting the address fields of

all packets can cause the IP dispatcher to become a bottleneck

when the system is overloaded with heavy client requests. The

DNS maps the URL name to the IP address of one of servers in

the web clusters through the round robin scheduling policy. The

DNS dispatcher based cluster does not present risk of bottleneck

but it control distribution of user requests in a limited way due

to the IP address caching in the DNS.

Main concern is on an alternative approach that integrates the

DNS based dispatching mechanism with redirection technique

based on load information of the web servers. The local name

server collects the load information from the web servers

periodically.

The purpose of distributing Internet traffic between various

web-server nodes in a web-server system, DNS plays an

important role. DNS not only provides load balancing but

network scalability and fault tolerance can also be achieved as

well. In this project work the DNS is integrated with an adaptive

load balancing approach that dynamically modifies zone records

in authoritative name server that is based on Load Average (LA)

value of various web-server nodes. By controlling Resource

Record Set (RR Set) in zone records, client will get reference of

web-server node that is having least value of load average,

there-by achieving load balancing. A new web-server will

automatically register itself in the zone records there-by

achieving scalability. If any of the web-server node is down,

then it will automatically removed from zone records so IP of

this web-server node that will not accessed by any client.

We have measured performance parameters like Load Average

(LA) and Throughput of the various web-server nodes. The

experimental results show that the proposed scheme achieves

better performance and provide scalable and fault tolerant

system than the default load balancing scheme based on the

random basis policy.

1. Introduction

Now days, many popular websites experience a high rate of

traffic from the users. Typical example of this is like Google,

Yahoo, and various sites accessed by the user all over the world.

To distribute the load of high requests from the users, these sites

use mirror servers.

The concept of load balancing is very important in order to

distribute the load among various web-servers that serves one

site. Load balancing technique is used to reduce the response

time and provide users the best available quality of service.

Several approaches can be used to achieve load balancing

among the servers with different degree of effectiveness.

1.1 Problem Domain

As the World Wide Web (WWW) increases in size and

complexity day by day, it is necessary to find the solution to

manage high load traffic on web-servers during peak hours. One

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

possible solution is to have a single web-server running on a

highly configured machine with fast processor, high storage

capacity etc. The problem solving in this way is limited because

the solution is not much scalable.

As soon as the volume of traffic increases, there arises the need

to modify the configuration of the machine in which web-server

is running. There are cases in which one must even forced to

replace hardware. So this solution is not fault tolerant as if there

is problem arises during peak hours there is no backup. In the

modern systems we are identifying three requirements that

should meet in order to publish information:

 Network Scalability: Preserving the used hardware

architecture and adding only a new HTTP server

running on a different machine, whenever the

incoming traffic to an existing HTTP server increases.

 Load Balancing: Sharing traffic among a group of

HTTP servers according to some policies which

depend on local load or some pseudo random heuristic.

 Fault Tolerance: In case of fault of one of the servers

we want to be able to recover, stopping its use and

replacing it with one of alive servers automatically.

 1.2 Solution Domain

 A web-server system with one virtual URL-Name and

multiple IPs is one of the possible approaches to

handle ever increasing client requests to popular web

sites. This system maintains a single interface to the

users and has the potential to provide better load

balancing. In the translation process from the symbolic

name (URL) to IP address, DNS can select any node of

the web-server system. In particular, this translation

process allows the DNS to implement various RR Set

scheduling policies at authoritative name server to

select the appropriate web-server node. In this work,

we will focus on an approach that integrates the DNS-

based dispatching mechanism with a redirection

technique based on the load average (LA) information

of the web-server system. The local name server that is

authoritative for this domain collects the LA

information from various web-server nodes

periodically and sorts the zone records with increasing

LA. By controlling RR Set ordering at DNS, client will

get reference of web-server node that is having least

value of LA. Preserving the used hardware architecture

and adding only a new web-server node with different

IP, it will dynamically registered in the zone records at

DNS, no manual modification in zone record is

required. Firewall is used at DNS to prevent any

unauthorized modification in zone records. These

techniques provide a scalable web-server system. In

case of fault of any of the web-server node, it will be

removed from the zone records dynamically and no

client will get reference of this web-server node thus

making system fault tolerant. This project work

describes the performance of the proposed web-server

system. We experiment the system using the request

generator, JMeter.

 1.3 System Domain

 Load balance is an important step for internet growth.

In this project work we review the solutions proposed

by researchers. We concentrate our attention to WWW,

since it is the most used internet service. Appropriate

solution for other services such as FTP, NTTP or

proprietary protocols may also be focused in same

manner.

 1.4 Application Domain

 The DNS makes it possible to assign domain names to

organizations independent of the physical routing

hierarchy represented by the numerical IP address

because of this, hyperlinks and internet contact

information can remain the same, whatever the current

IP routing arrangements may be, and can take a

human-readable form (such as "example.com").

These internet names are easier to remember than the

IP address 203.45.118.126. People take advantage of

this when they recite meaningful URLs and e-mail

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

addresses without caring how the machine will actually

locate them.

 The Domain name System distributes the responsibility

for assigning domain names and mapping them to IP

networks by allowing an authoritative name server for

each domain to keep track of its own changes, avoiding

the need for a central register to be continually

consulted and updated.

 1.5 Scope of Work

 In the current work, we have focused on DNS based

load balancing approach, with a redirection technique

based on the Load Average (LA) information of the

Web-Server nodes. The local name servers collects the

LA information from web-servers node periodically

and arrange zone records, so that client request can be

directed to the web-server node that is having least

value of LA.

 The measured performance of the DNS-based

distributed web-server system. Moreover, we used the

request generator, JMeter in order to generate client

requests. The experimental results show that the

proposed scheme achieves better performance than the

default load balancing scheme based on the random

policy.

 2.1 Load Balancing- An Overview

 The traffic on the World Wide Web increases and

causes increase in client requests to popular websites,

when special events happen such as Olympic Games

and General Elections. To improve the capacity of

server, Site administrators face many problems. One

approach to improve the capacity of server is to

replicate information across a mirrored server. In this

approach users manually select alternative URLs for a

web-site. However, this technique is not user-

transparent, and also not allows controlling requests

distribution. Another solution to balance the load

among the web-servers is a DNS based, that can

distribute incoming request from the client among

several web-server nodes.

 Figure 2.1: Topology for Load balancing

 A In normal practice client-side load-balancing is not

involved, but it is indeed possible, when using

Netscape browser in which a simple balancing

algorithm is incorporated in their navigator browser,

making it to choose random web-servers.

 B Routing protocols are used, such as Border Gateway

protocol, used for data-exchange between large internet

operators.

 C Client request for an ip address by typing website

name in URL.

 D DNS server is used to convert the website name

typed by the client into valid ip and give back this ip

address to client.

 E Various web-servers is used to serve the one site.

 2.3 Load Balancer Components

 A few fundamental components or concepts are used to

build any type of load balancer, regardless if it is

implemented in hardware or software. A balancing

device must be able to receive and send packets

through some form of data-forwarding plane. It must

have an algorithm that decides how the load should be

balanced between available the nodes. These two

components are basically sufficient for a load balancer

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

to work. Depending on the requirements of network

traffic and load distribution, they can have varying

degrees of sophistication. A third component found in

many balancers is a health-check mechanism that

enables the load-balancing algorithm take into account

server health, e.g. availability and load, when

distributing traffic.

 2.4 The Domain Name System

 In the internet the Domain Name System (DNS) is the

global name lookup service. It is a hierarchical,

redundant and distributed database running on

thousands of servers worldwide, each responsible for

one or more DNS zones. When a client issues a request

for a URL in the form of any website name, the

browser will first try to resolve the hostname in the

URL into an IP address, so that it knows where to send

the request. This is where it is possible for a DNS

server to influence the outcome of a query, effectively

directing the client to a least loaded web server, if the

requested site more than one web server. However, the

DNS approach based on load balancing is not without

challenges, as will be discussed shortly.

 If we go more in analyzing on how DNS works, it is

easier to understand the challenges. Figure 2.3, shows a

step by step diagram of a DNS query for a site.

 A. First, the browser extracts the hostname

www.example.net from the URL and runs it through a

gethostbyname() system call.

 B. The operating system redirects the request to the

local resolver (typically ISP name server), asking for

the A-record for www.example.net – an A-record is a

standard hostname-to-IP mapping. The request to the

resolver is recursive, which enables a flag meaning ―I

only want the final answer.‖

Figure 2.2: Standard DNS Lookup Procedure.

C. The local resolver performs several iterative queries;

iterative meaning ―direct me to a better match.‖ First it asks one

of the thirteen root DNS servers. These know which servers

control the top-level domains like com, org and net. The local

resolver caches the response.

D. Further, the resolver asks one of the .net DNS servers for

further directions to the example.net domain. Again, it caches

the response.

E. Then when the iteration process reaches one of the

example.net DNS servers, it will know the answer to the query,

and reply with an IP address, e.g. 192.0.34.166. Yet again, the

resolver caches the response.

F. The response is sent back to the client operating system,

which also caches the response.

G. The IP address is returned to the browser, which in turn can

contact the server and retrieve the content. In addition to the

operating system caching the response, most popular browsers

will do so as well. Note how this rather simple example implies

at least five levels of caching, not counting potential

intermediate proxy nodes, e.g. http proxies. To give an insight

into how name servers respond to queries, consider the listing

below, showing what a client would receive when asking for the

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

IP address of the cnn.com host. This particular output is from

the ‗dig‘ application, and shows three main sections: The

question section echoes the request information; the answer

section shows the matching records (if any); the authority

section lists the authoritative name servers for the domain.

Figure 2.3: Response of “DIG” Application

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

There are several interesting properties of the DNS response in

the listing. First of all, it is clear that the name servers return

multiple A-records for the cnn.com Host name – this is known

as a resource record set (RR set). Also, the addresses appear to

be within the same provider network; the provider is verified to

be America Online by querying the whois database for the IP

addresses. Now, even if all addresses are within a very close

range, this does not mean that they are geographically close to

each other (for reasons which will be discussed in a later section

about any cast routing). However, tracing the path to each IP

from multiple locations around the world shows that they are

most probably located in the same city, and maybe even the

same data centre.

The authoritative name servers for the cnn.com domain have

more varied IP addresses (not shown here). Therefore it seems

the name servers are more geographically dispersed – closer

inspection reveals that they are hosted in different operator

networks. In other words, AOL cooperates with other operators

to provide a redundant DNS service, a very common practice.

Going back to the answer section, it is obvious that some form

of load balancing scheme is running, though it is difficult to

determine exactly what kind it is. Consecutive queries to one of

the main DNS servers show that for each request, the A-record

set is returned in a seemingly shuffled order. This could mean

that the balancing mechanism relies on the DNS server

responding with an address set in a given order, be it random or

otherwise. Clients typically traverse the set sequentially, starting

from the top. That is, if the first address on the list does not

work, the client tries the next one, and so on. This is however

highly implementation-specific.

The numbers in the second column of the response show the

time-to-live integer value (TTL) in seconds. This value governs

how long the answer is cached in intermediate nodes, e.g. local

resolvers. As long as the TTL is 0 or higher, queries will be

answered from the cache instead of being redirected to other

servers. In the example, the A-records have a TTL of 5 minutes.

Comparably, single host, low-traffic sites may operate with a

TTL in the range of hours to days – informational documents

recommend a value in the range of minutes when deploying

DNS-based load balancing.

A low TTL ensures that DNS servers are queried often, and are

hence given the possibility to influence the answer over

relatively small time intervals. Low TTLs come at the cost of

higher frequency of queries, which can add a considerable delay

to the total page response time.

In conclusion, we observe that load-balancing using DNS can

adopt two basic mechanisms. First, delivering a resource record

set in a given order; second, setting the TTL to a relatively low

value. Unfortunately, these are by no means reliable.

Considering the first point; no Internet standards or authoritative

documentation require DNS implementations to preserve the

order of resource record sets. Even if it could be considered a

rule of thumb in the Internet community to leave any record set

ordering intact, there is no reason to assume that all DNS

software would follow such recommendations. As for TTL

values, multiple levels of caching make it a challenge to predict

and control the actual TTL observed by the end us

2.4.1 Example of Uses of DNS

Basic DNS-based load balancing does not require any

complex configuration to work. The following listing

is an example taken from a normal BIND zone file

with standard syntax, and it describes the fictional

test.lan zone:

.

Figure 2.4: Example “ZONE” File

The first line defines the time-to-live value to use for

all the records contained within the Zone file. Next, on

lines 2 through 7, is the start of authority record, which

describes behavior of slave name servers. The relevant

records, however, are the six A-records that make up

the RR set for the www.test.lan hostname. As a result,

any lookup for the A-record for www.test.lan would

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

return the entire set of addresses to the querying client.

This leads us to the question of RR set ordering, i.e. in

which order are the records returned to the client. As

previously mentioned, RR set ordering is not governed

by any authoritative or recommended standards, so, it

is entirely up to the implementation of DNS software

how to handle ordering of RR sets. BIND, major

version 9, provides three basic methods of ordering,

designated fixed, cyclic and random. The desired

ordering can be specified in the BIND Configuration

file.

 Figure 2.5: Example RR-Set Ordering

2.5 DNS-Based Approach for Load Balancing

Distributed Web-server architectures that use request routing

mechanisms on the cluster side are free of the problems of

client-based approaches. Architecture transparency is typically

obtained through a single virtual interface to the outside world,

at least at the URL level. The cluster DNS—the authoritative

DNS server for the distributed Web system‘s nodes—translates

the symbolic site name (URL) to the IP address of one server.

This process allows the cluster DNS to implement many

policies to select the appropriate server and spread client

requests. The DNS, however, has a limited control on the

request reaching the Web cluster. Between the client and the

cluster DNS, many intermediate name servers can cache the

logical-name-to-IP address mapping to reduce network traffic.

Moreover, every Web client browser typically caches some

address resolution. Besides providing a node‘s IP address, the

DNS also specifies a validity period (Time-To-Live, or TTL)

for caching the result of the logical name resolution .When the

TTL expires, the address-mapping request is forwarded to the

cluster DNS for assignment to a Web-server node; otherwise, an

intermediate name server handles the request [2] .

Figure 2.6: DNS-Based Approach to Load Balancing.

Figure 2.7 shows both resolutions. This figure, like those in the

following sections, shows the different approaches for

distributing requests on the basis of a protocol-centered

description. If an intermediate name server holds a valid

mapping for the cluster URL, it resolves the address-mapping

request without forwarding it to another name server.

Otherwise, the address request reaches the cluster DNS, which

selects the IP address of a Web server and the TTL. The URL-

to- IP-address mapping and the TTL value are forwarded to all

intermediate name servers along the path and to the client

.Several factors limit the DNS control on address caching. First,

the TTL period does not work on the browser caching.

Moreover, the DNS might be unable to reduce the TTL to

values close to zero because of non cooperative intermediate

name servers that ignore very small TTL periods.

On the other hand, the limited control on client requests

prevents the DNS from becoming a potential bottleneck .We

distinguish the DNS-based architectures by the scheduling

algorithm that the cluster DNS uses to balance the Web-server

nodes‘ load. With constant TTL algorithms, the DNS selects

servers on the basis of system state information and assigns the

same TTL value to all address-mapping requests. Alternatively,

adaptive TTL algorithms adapt the TTL values on the basis of

dynamic information from servers and/or clients.

2.6 Understanding Load averages as opposed to CPU

usage

Many Linux administrators and support technicians regularly

use the ―top‖ and ―uptime‖ utility for real-time monitoring of

their system state. Top is rich with information—memory

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

usage, kernel states, process priorities, process owner and so

forth all can be obtained from top [16].

The three load-average values in the first line of top output are

the 1-minute, 5-minute and 15-minute average. (These values

also are displayed by other commands, such as uptime, not only

top.) That means, reading from left to right, one can examine

the aging trend and/or duration of the particular system state.

The state in question is CPU load—not to be confused with

CPU percentage. In fact, it is precisely the CPU load that is

measured, because load averages do not include any processes

or threads waiting on I/O, networking, databases or anything

else not demanding the CPU. It narrowly focuses on what is

actively demanding CPU time. This differs greatly from the

CPU percentage. The CPU percentage is the amount of a time

interval (that is, the sampling interval) that the system's

processes were found to be active on the CPU. If top reports

that your program is taking 45% CPU, 45% of the samples

taken by top found your process active on the CPU. The rest of

the time your application was in a wait. (It is important to

remember that a CPU is a discrete state machine. It really can

be at only 100%, executing an instruction, or at 0%, waiting for

something to do. There is no such thing as using 45% of a CPU.

The CPU percentage is a function of time.) However, it is likely

that your application's rest periods include waiting to be

dispatched on a CPU and not on external devices. That part of

the wait percentage is then very relevant to understanding your

overall CPU usage pattern.

The load averages differ from CPU percentage in two

significant ways:

A. Load averages measure the trend in CPU utilization not only

an instantaneous snapshot, as does CPU percentage.

B. Load averages include all demand for the CPU not only how

much was active at the time of measurement.

Taking the discussion back to the machinery at hand, the load

averages tell us by increasing duration whether our physical

CPUs are over or under-utilized. The point of perfect utilization,

meaning that the CPUs are always busy and, yet, no process

ever waits for one, is the average matching the number of

CPUs. If there are four CPUs on a machine and the reported

one-minute load average is 4.00, the machine has been utilizing

its processors perfectly for the last 60 seconds. This

understanding can be extrapolated to the 5- and 15-minute

averages. In general, the intuitive idea of load averages is the

higher they rise above the number of processors, the more

demand there is for the CPUs, and the lower they fall below the

number of processors, the more untapped CPU capacity there is.

But all is not as it appears.

Load average

 Load average is intended to provide some kind of

information about how much work has been done on

the system in the recent past 1 minute, the past 5

minutes and the distant past 15 minutes.

 Load average is not about utilization but the total

queue length.

Figure 2.7: Shows the Average CPU Load of Each Web-Server in

the Web-Server

System Using the DNS Based Round-Robin Scheduling

 Policy.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 9
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 2.8: Average CPU Load of Web-Servers Based on the

Proposed Load Balancing Scheme

3.2 Distributed Web-server System

We consider a distributed Web-server system with a generic

structure as shown in Figure3.1 Generally a Web-server system

architecture consists of three entities: the Client, the Domain

Name Server (DNS) and the Web-Server. The cluster Web-

server system can be organized into several Web-Servers nodes

and a DNS that resolves all initial address resolution requests

from local gateways. Each client session can be characterized

by one address resolution and several Web page requests. At

first, the client receives the address of one Web-server of the

cluster through the DNS address resolution. Subsequently, the

client submits several HTTP requests to the Web server. In

addition to resolving the URL-name to the IP address of a Web-

server, the DNS of a cluster Web-Server system can collect

information from Web-Servers for various statistics. Moreover,

the DNS can select the address of a Web-Server based on the

collected Information. In order to select the address of the

suitable Web-Server, the DNS could use some scheduling

policy to balance the load among several Web-Servers to avoid

becoming overloaded.

Figure 3.1: Generic Structure of the Web-Server System

Many existing distributed Web-server cluster systems assign the

client requests arriving at the DNS in a random manner among

the Web-servers. The Random DNS policy is efficient in the

system where the client requests from local gateways are

uniformly distributed due to IP-address caching mechanism at

the client. Another approach to the DNS scheduling policy is to

allow the DNS to select a Web-server from the cluster based on

some load information from the Web-servers. The DNS can

collect various kinds of data from the Web servers such as

history of server state, the number of active server connections

or detailed processor loads. Most conventional load balancing

schemes have used this kind of approach using the load

information from servers. We present some simple strategies in

order to improve the performance of the distributed Web-server

cluster system. In this work, we focus on Load Average (LA)

value from various web servers. The load average represents the

number of computers you would need to be able to run all of the

processes at the same time.

3.4 Hardware Consideration

An Ethernet based LAN with six Pentium Machines will be

used. One will be used as Client with Ms Windows XP, one as

DNS Server with LINUX OS and BIND 9, four Machines will

be used as Web-Servers with LINUX OS and Apache 2.0 as

Web-Server. Load generator JMeter is used on Windows Client.

The hosts within the network are interconnected according to

the figure 3.2.Web-Servers are running on IP 192.168.1.2,

192.168.1.3, 192.168.1.4, 192.168.1.5. DNS Server is running

on IP 192.168.1.100. Web-client is having an IP of same

network segments.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 10
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 3.2: Experimental Setup for Web-Server System

Figure 3.2: Experimental Setup for Web-Server System

4.2.1 Measurement of Throughput on each Web-Server

node with Fixed Zone record and Random RRSet Ordering:

Graph 4.9: Throughput on Web-Server Node 192.168.1.2

Average Throughput 36.31 KB/S

Graph 4.9 shows throughput on vertical axes against time on

horizontal axes for first Web-server node. Average value of

throughput is 36.31 KB/S. As shown in curve, transportation of

the data is random, and it is non uniform with time. At any

instance of time, high value of throughput shows that HTTP

request is being processed by node and zero throughputs is

indication that no HTTP request is reaching on this node

 Graph 4.10: Throughput on web-server node

192.168.1.3Average Throughput 25.45 KB/S

 Graph 4.10 shows throughput for second Web-server node.

Average value of throughput is 25.45 KB/S. As shown in curve,

transportation of the data is random, and it is non uniform with

time.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 11
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Graph 4.10: Throughput on web-server node 192.168.1.3

Average Throughput 25.45 KB/S

Graph 4.10 shows throughput for second Web-server node.

Average value of throughput is 25.45 KB/S. As shown in curve,

transportation of the data is random, and it is non uniform with

time.

Graph 4.11: Throughput on Web-Server Node 192.168.1.4

Average Throughput 28.19 KB/S

Graph 4.11 shows throughput for third Web-server node.

Average value of throughput is 28.19 KB/S. As shown in curve,

transportation of the data is random, and it is non uniform with

time.

Graph 4.12: Throughput on Web-Server Node 192.168.1.5

Average Throughput 20.72 KB/S

Graph 4.12 shows throughput for fourth Web-server node.

Average value of throughput is 20.72 KB/S. As shown in curve,

transportation of the data is random, and it is non uniform with

time.

4.2.2 Measurement of Throughput on each Web-Server

node with Varying Zone record and Fixed RRSet Ordering:

Graph 4.13: Throughput on web-server node 192.168.1.2

Average Throughput 40.90 KB/S

Graph 4.13 shows throughput for first Web-server node.

Average value of throughput is 40.90 KB/S. As shown in curve,

transportation of the data is regular, and it is more uniform with

time.

Graph 4.14: Throughput on web-server node 192.168.1.3

Average Throughput 42.72 KB/S

Graph 4.14 shows throughput for second Web-server node.

Average value of throughput is 42.72 KB/S. As shown in curve,

transportation of the data is regular, and it is more uniform with

time.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 12
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Graph 4.15: Throughput on Web-Server Node 192.168.1.4

Average Throughput 34.54 KB/S

Graph 4.15 shows throughput for third Web-server node.

Average value of throughput is 34.54 KB/S. As shown in curve,

transportation of the data is regular, and it is more uniform with

time.

Graph 4.16: Throughput on Web-Server Node 192.168.1.5

Average Throughput 35.73 KB/S

Graph 4.16 shows throughput for fourth Web-server node.

Average value of throughput is 35.73 KB/S. As shown in curve,

transportation of the data is regular, and it is more uniform with

time.

With Random RRSet ordering at DNS, average value of

Throughput is different on each web-server nodes. Maximum

average value is 36.31 KB/S and minimum average value is

20.72 KB/S. Moreover, throughput is not uniform for the

complete 60 minutes interval. With Fixed RRSet ordering at

DNS, Maximum average value is 42.72 KB/S and minimum

average value is 34.54 KB/S. So throughput is improved on

each web-server node. Moreover, throughput is more uniform

for the complete 60 minutes interval.

Table 4.3.1 Comparison between Random Vs Fixed RR-set

Ordering in Load Average

Web-server

Node

 Average value of LA

with Random RRset

Ordering (LA / S)

 Average value of

LA with Fixed

RRset Ordering

(LA / S)

 192.168.1.2 0.681 0.216

 192.168.1.3 0.521 0.218

 192.168.1.4 0.341 0.187

 192.168.1.5 0.262 0.220

Table 4.3.2 Comparison between Random Vs Fixed RR-set

Ordering in LA Throughput

Web-server

Node

Average value of

Throughput with

Random RRset

Ordering.

(KB/S)

 Average value of

Throughput with

Fixed RRset

Ordering (KB/S)

 192.168.1.2 36.31 40.93

 192.168.1.3 25.45 42.72

 192.168.1.4 28.19 34.54

 192.168.1.5 20.72 35.73

We compared the three different parameters for the various

Web-Server nodes based on fixed Zone records and random RR

set ordering vs. the varying Zone records and fixed RRSet

ordering, in Authoritative Name Server. The proposed Web-

server system based on varying Zone records and fixed RR set

ordering at DNS can achieve better performance than the

system based on the fixed zone record and Random RRSet

ordering at DNS. This result is likely due to the Load Average

information collected from each Web-server nodes, by the

authoritative name server.

5 Conclusion
As seen in the previous chapter the experiment run on different

PCs, that includes a DNS server (takes request from the different

clients and forward this request to different Web Servers), A

Web Server System (in which a site is running and these servers

used to serve the client but the client they serve choose by the

DNS), And a Client (Which generate load for different Web

Severs). In our Experimental setup these all are connected

through switch, in order to communicate with each other. In

order to maintain load balance in different Web server, we use

different Software and java programs that collect the load from

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 13
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the different Web server and dump it on the DNS server. So there

is a use of two programs one is the Server program that run on

DNS machine and another one is the Client program that run on

the different web server.

And finally when the loads collect at the DNS server then DNS

server able to decide that the Client request goes to which web

server according to there loads.In this work our main emphasis is

to balance the load in different web server by using the parameter

called Load Average (LA). In order to show the difference

between the load balancing mechanism used by DNS system

previously and the mechanism used in this project , we plot a

graph which shows that this mechanism is lot better than the

previous one.

We have measured the performance of Web-server system,

where Authoritative Name Server distribute client request

between various Web-server nodes and thereby provide Load

Balancing.No client request will be forwarded to a Web-Server

node that is down and new web-server node will automatically

registered in Zone records thereby providing fault tolerant

(stopping use of a non working system) and scalable Web-Server

system .The experimental results show that the proposed scheme

achieves better performance than the default Load Balancing

scheme based on the Random policy. Throughout this work, we

have examined the use of Domain name system as mechanism

for load balancing. In Authoritative Name server, TTL is kept

zero so cashing of the records is not permitted. This work can be

further extended in a WAN environment so that other parameter

like Network Bandwidth, Geographical distribution of the

various web-server nodes and Network traffic level can be taken

into the consideration.

References

[1] Sven ingebright ―High level load balancing for web services.

Masters thesis‖ 2006,Uni. of Oslo.

[2]VALERIA CARDELLINI University of Rome Tor Vergata,

MICHELE COLAJANNI University of Modena , PHILIP S.

YU IBM T.J. Watson Research Center ―dynamic Load

balancing on web server system IEEE Internet Computing

1999.

[3]Y. S. Hong, J. H. No and S.Y. Kim ―DNS-Based Load

Balancing in Distributed Web-server Systems ―Proceedings of

the Fourth IEEE Workshop on Software Technologies for

Future Embedded and Ubiquitous Systems and Second

International Workshop on Collaborative Computing,

Integration, and Assurance (SEUS-WCCIA‘06) 2006 IEEE.

.[4] N. Aghdaie and Y. Tamir, ―Performance optimizations for

transparent fault-tolerant Web services‖,IEEE Pacific Rim

Conference on communication, Computer and Signal

Processing, Victoria, Canada,

[5] Roberto Baldoni, Simona Bonamoneta, Carlo Marchetti,

"Implementing Highly-Available WWWServers Based on

Passive Object Replication", Second IEEE International

Symposium on Object-Oriented Real-Time Distribute

Computing, Saint-Malo, France, (May, 1999).

 [6] V. Cardellini, E. Casalicchio, and M. Colajanni,―The state

of the art in locally distributed Web-server systems‖, ACM

Computing Surveys, Vol. 32, No. 2, pp.

263-311, (Jun. 2002).

[7] V. Cardellini, M. Colajanni, P.S. Yu, ―Request redirection

algorithms for distributed Web systems'', IEEE Transactions on

Parallel and Distributed Systems, Vol. 14, No. 4, pp. 355-368, (

April 2003).

 [8] V. Cardellini, E. Casalicchio, M. Colajanni, P.S. Yu, The

state of the art in locally distributed Web-server systems, IBM

Research Report, RC22209(W0110-048), (October 2001).

[9] M.Castro, M. Dwyer and M. Rumsewicz, ―Load balancing

and control for distributed World Wide Web servers‖, IEEE Int.

conf. On Control Applications, Hawaii, USA, pp.1614-1619,

(Aug. 1999).

[10] M. Colajanni, P. S. Yu, and D. M. Dias, ―Analysis of task

assignment policies in scalable distributed Web-server

Systems‖, IEEE Transactions on Parallel and Distributed

Systems, Vol. 9, No. 6, pp. 585-600, (June 1998).

[11] Y.S. Hong, J.H. No, and In Han, ―Evaluation of fault-

tolerant distributed Web systems‖, Proc. WORDS 2005 (IEEE

CS 2005 Workshop on Object-Oriented Real-Time Dependable

Systems), Sedona, U.S.A. (Feb. 2005)

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 14
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[12] H. Yokota, S. Kimura, and Y. Ebihara, ―A proposal of

DNS-based adaptive load balancing method for mirror server

systems and its implementation‖,18
th

IEEE Int. Conf. On

Advanced Information Networking and Application, 2004.

Web References

[13] http:// jakarta.apache.org

[14] http://linux.com

[15] Pro DNS and BIND: Ron Aitcheson

[16] UNIX Load Average: How It Works by Dr. Neil Gunther.

[17] RFC 1794 (DNS support for Load Balancing).

[18] Java computing, http://sun.com/java

[19] Apache‘s site http:// apache.org

[20] RFC 1032 Domain Administrators Guide.

[21] Wikipedia DNS- Wikipedia, the free encyclopedia

